

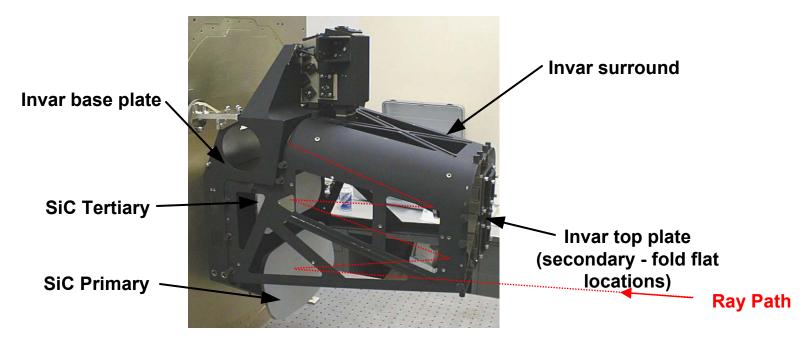
Section 6

ALI Silicon Carbide (SiC) Technology

Introduction

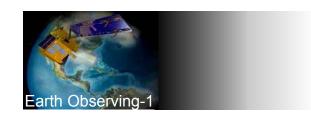
SSG Precision Optronics Background

- 20+ year old small business
- Specializes in the design, fabrication, and test of all-reflective telescope systems for space applications
- 30+ space systems developed and delivered
- 10+ years of experience with SiC materials and SiC instruments


SSG NMP EO-1 Mission Contributions

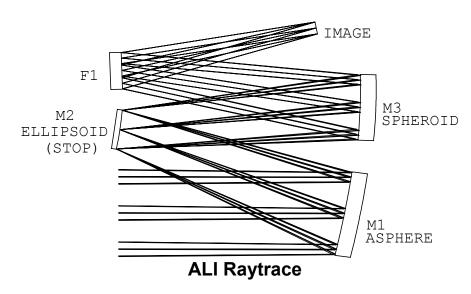
- Partner in NMP IPDT
- ALI optical design, fabrication and test support to MIT/LL
- Incorporate SiC technology into ALI instrument
- SSG also responsible for design, fabrication and test of Hyperion optical system in support to TRW

ALI Instrument Overview


Primary Telescope Specifications

- Aperture: 12.5 cm
- Focal Length: 94 cm
- Field of View: 1.0 x 15 degrees
- Wavelength: 0.4 2.5 μm
- $MTF @ 0.6 \mu m (37.5 lp/mm): > 0.5$
- **Distortion:** < 275 μm; < 250 μm

Primary Design Elements


- 4 mirror, all reflective, unobscured optical design
- Flat focal surface
- Hot Pressed SiC optics
- Invar 36 metering structure

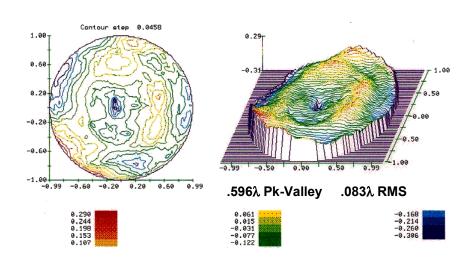
ALI Optical Design

ALI Secondary Mirror

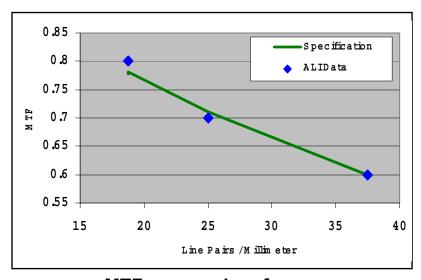
ALI Primary Mirror

- Reflective version of Cooke Triplet
- Aperture stop on secondary mirror
- Off-axis, wide field of view
- Flat image plane

ALI Mirrors


	Primary	Secondary	Tertiary	Fold Flat
Optical	General	Ellipsoid	Sphere	Flat
Shape	Asphere			
Size	13.1"	3"	11.7"	10.8"
	x 6.6"	diameter	x 5.3"	x 3.4"
Material	Si on SiC	Si on SiC	SiC	SiC
Base	-65.5"	23.7"	-36.6"	NA
Radius				

ALI Optical Performance (Image Quality)



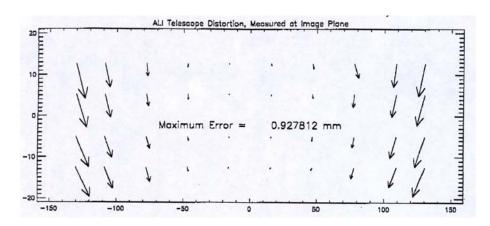
- WFE derived from MTF specification using Code V
- Required system WFE (@ temp) < 0.15 λ RMS (@ 0.63 μ m)
- 12 Field points tested, System WFE (@ temp) 0.089 0.148 λ RMS (@ 0.63 μ m)

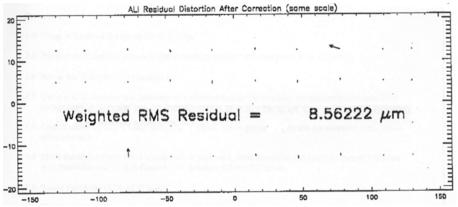
MTF spec and performance

System Level MTF

- MTF performance projected from wavefront maps input specification using Code V
- System meets or exceeds spec at 18.75 and 37.5 lp/mm

Precision Optronics, Inc.



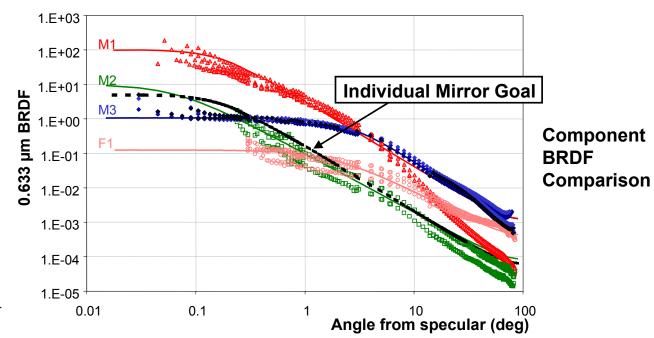

ALI Optical Performance (Distortion)

Optical Distortion

- Distortion measured by mapping the angular locations of 40 points on a scribed target through the ALI optical system
- Uncorrected data shows maximum distortion vector length of 928 μm
- Cubic polynomial data correction (Dr. David Hearn, MIT/LL)
 brings residual distortion values down below 9 μm

Distortion Map Prior to Correction

Distortion Map After Correction



ALI Optical Performance (Stray Light)

Stray Light

- ALI Flight optics do not meet ALI stray light requirements for 5 of the 8 spectral wavebands (Lambda Research)
 - Bands out of spec by 2x 10x
- System level stray light requirement has been converted to component level BRDF requirements (Lambda Research)
- BRDF needs 20x improvement (ALI M1) to meet stray light requirements

ALI Performance Summary

 ALI SiC optical system meets or exceeds most of the telescope requirements

Component level surface figure — Distortion map over FOV

ReflectivityFocal length

Field of viewAperture uniformity

Angular resolutionMechanical stability

Point spread functionThermal stability

System throughputSize

Image quality over FOVWeight

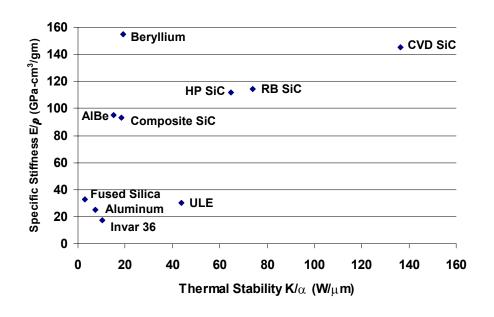
- ◆ The one exception noted is the system stray light performance of the system, component level BRDF of SiC optics
 - NASA funded technology program has been completed at SSG in order to demonstrate that this limitation, associated with these specific flight optics, is not a fundamental limitation associated with SiC optics technology

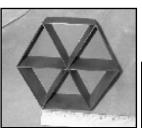
Technology Description

Optical Design

- Wide field of view
- Flat image plane
- Low distortion
- Excellent image quality

SiC Materials Technology


- Hot Pressed SiC Optics
- Polished SiC flat and spherical surfaces
- Polished, Silicon coated SiC aspheric surfaces
- Protected silver coatings



SiC Materials Advantages

RB SiC Mirror Substrates (as cast)

◆ Different forms of SiC suitable for different applications

- Specific Stiffness of SiC (HP, RB, CVD) 70% 90% of Beryllium
- Thermal Stability of SiC 3x 1.5x better than ULE glass
- Hot Pressed SiC suitable for simple "slab"-type geometries
- Reaction Bonded SiC produces rib-supported, lightweighted

 sig mirrors without any costly ceramic machining steps

 Precision Optronics, Inc.

ALI SiC Description

Hot Pressed SiC Optics

- HP SiC has flight heritage through NMP DS-1 MICAS payload
- Spherical and flat surfaces polished directly in SiC material
- Aspheric surfaces produced in a silicon cladding over SiC mirror substrate
- Moderate mirror lightweighting
- Denton protected silver on all optics

Invar 36 Metering Structure - Optical Bench

- Invar selected to avoid brittle damage risks associated with conventional SiC materials
- Composite SiC technology not deemed sufficiently mature
- Aggressively lightweighted Invar structure provides structural stability and good CTE match to SiC optics
 - MIT/LL machine shop responsible for bench fabrication

EO-1 Technology Program

- Technology program funded by NASA, augmented with SSG internal R&D efforts
- Three main objectives
 - Demonstrate bare SiC (flat), and silicon coated SiC (aspheric) optics with finish/scatter suitable for future ALI-like missions
 - Better quantify the effects of Denton silver coating on SiC optics scatter performance
 - Incorporate current state-of-the-technology SiC materials into the technology program (RB SiC mirror substrates)
- ◆ A number of witness samples and small aspheric optics produced in order to facilitate coating and polishing process optimization
 - Results of these process optimizations applied to the spare ALI primary mirror in order to demonstrate this improved result on a representative, flight-like mirror

Process Optimization Samples

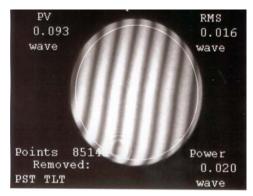
Mission Technology Forum

- Numerous process optimization samples produced
 - RB SiC flats
 - 2" diameter
 - Silicon coated RB SiC Aspheres
 - Convex hyperboloid (3" diameter)
 - Concave ellipsoid (4" diameter),
 rib supported
 - Spare ALI Primary Mirror
- Data collected
 - Surface figure
 - Surface roughness (before and after Denton Silver)
 - BRDF (before and after Denton Silver)

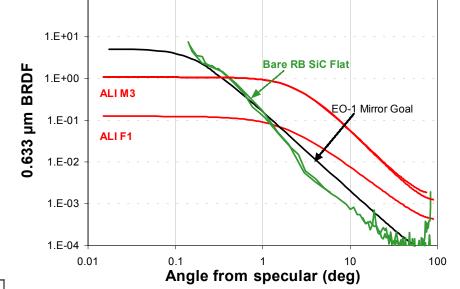
Spare ALI Primary Mirror (Concave Asphere)

Concave Ellipsoid

Convex Hyperboloid



RB SiC Flat Sample Results


1.E+02

Mission Technology Forum

RB SiC flat surface figure •0.016 λ RMS •0.093 λ Pk-valley

RB SiC Flat BRDF Data

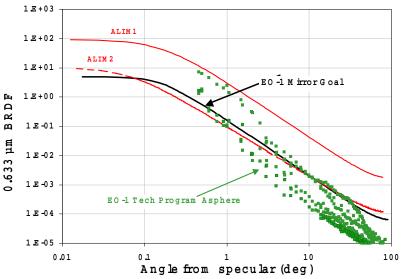
Surface Figure - Finish

<u> </u>				
	Sample #1	Sample #2		
Surface Figure	0.016 λ RMS	0.016 λ RMS		
	(@ 0.6 μm)	(@ 0.6 μm)		
Surface	7.18	8.14		
Roughness	Angstroms	Angstroms		
(prior to Denton	RMS	RMS		
coating)				
Surface	7.30	7.58		
Roughness	Angstroms	Angstroms		
(after Denton	RMS	RMS		
coating)				

◆ Surface Scatter - BRDF

 RB SiC samples shows dramatic improvement in scatter compared to ALI flight optics meeting EO-1 ALI specifications

Silicon Coated SiC Asphere Sample Results


Spare ALI Primary Mirror surface figure

•0.035 λ RMS •0.294 λ Pk-valley

Surface Figure - Finish

	Cvx Hyper	Ccv Ellips
Surface Figure	0.035 λ RMS	0.035 λ RMS
	(@ 0.6 μm)	(@ 0.6 μm)
Surface	27.0	10
Roughness	Angstroms	Angstroms
(prior to Denton	RMS	RMS
coating)		
Surface	28.6	TBD
Roughness	Angstroms	
(after Denton	RMS	
coating)		

Si coated SiC Asphere BRDF Data

Surface Scatter - BRDF

 Si coated SiC samples show improved scatter, all BRDF measurements (with the exception of one close angle data set from one test point) meet ALI specs

Summary

- ALI SiC flight instrument demonstrates excellent image quality, MTF, and distortion performance over a wide field of view
- SSG's continuing SiC materials development allows new SiC materials to be applied to similar missions
 - Significant cost savings
 - Significant weight savings
 - Improved material properties
- ◆ EO-1 Technology Program has demonstrated RB SiC flats and silicon coated RB SiC aspheres which meet or exceed BRDF-stray light requirements associated with next generation ALI-like missions
 - Stray light scatter performance demonstrated on spare ALI primary mirror with excellent results

